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Why Study Empirical Processes

Four motivating contexts

I Estimate a calf or a

quantile function

I Stochastic Optimization S

Stochastic Fixe int Problem
in Euclidean space

Stochastic Optimization St
stochastic Fixedyphoint Problem
in non standard spaces

I Analyzing the bootstrap



II Estimate a CDF Quantile

Let X X be iid random

variables with distribution function F

The natural estimator of Fis

Fn Cr In Iz Icao Xi

N



II Estimate a CDF Quantile

The natural estimator of the
quantile function

F y inffen Eazy

is the sample quantile function

Qnly inffer Fens y

Y3

Yz

qY

Fly Fly F Cyd a



II Estimate a CDF Quantile

What can we say about IT
as an estimator of F

Specifically

i
snap I Fini Fal o

Iii How fast

Analogous questions about Qn
as an estimator of F



II Estimate a CDF Quantile

The principal route to

answering such questions

analyzes the empirical process
nts Pn a Plas

pin rn Fna Fas name

qnCy rn Qnly Ely o y l



II Estimate a CDF Quantile

For example if Xj E G i f 1,2 n

then

Bn B l

where B is the Gaussian random

element of DG I specified by
E BAD o IE Bcs BHI F sat Fight
Theorem 143 in Billingsley 1999

Beware l is weak convergence in

metric space



II Estimate a CDF Quantile

So what

Weak Invariance Principle
Because of it it

may
be

expected that operations on

psn will behave like operations

of B

Hence the behavior of E can be

approximated by passing to the limit



II Estimate a CDF Quantile

Two Classic Examples Dasgupta 2011

i Kolmogorov Smirnov statistic

os.IE 113dmI swap Beef05 51

where sup 113cm has the
04kt

known Cdf l 2 pt f Dk e 2kY yso

ii Cramer von Mises

Jo pice DF Binda



II Estimate a CDF Quantile

The analogous setting for the

quantile process

suppose F is absolutely continuous

with density f so f differentiable
and Fasci tem 1

44 is uniformly
bounded on supp f Then for any celeb

EYE a
9Mt HI EYE cl

Bail



II Estimate a CDF Quantile

Stepping back

scaling parameter
r n

pony Fr Face Fm re R

n est terror
Gaussian

Bca re IR process

Notice We can also write the above as

pnlnj fnfpnfo.si Pfto.BD nelR

PBC QD re R



I I stochastic Optimization

Example 1

Relate employment with education

Data Yi Zi 1 1,2 n

where

Yi
if i has a job

0 otherwise

Zi is the education of individual i

Assume

P Y l Zz G Iz Ee Rd

Where GH It e 9J eye R



II stochastic Optimization

Optimization Problem Classic MLE

Find One argmax Hn o

R
where

Hn 1i n jIHC0Yj
Y l Y

Hlo.YJi_logGC0ZI4
GCozDoti

argmaxh fIEfHCo.Y't



II stochastic Optimization

Key Questions

C Does On converge to
0 in

any sense e g 11 on 0 11
a s
so

H Con H o

Iii How fast



I I stochastic Optimization

In answering questions in A s B

EP is the natural viewpoint Why

Define the EP parameter
T

E O Tn Halo h o Ot Rd
n

v

scaling
error

Principle Sf En can be shown

to converge to a Gaussian process

then answers to i and ii become

possible



II stochastic Optimization

There is nothing special about
the MLE example

General Stochastic Optimization

Find argmin ha E H 0

DE O E Rd

where Yin CY A H RdxY R

so



II stochastic Optimization

Find argmin ha E H 0,45J

DE O E Rd

where Yin Cy A H RdxY SIR

sample Version of Cso
n

Find argmin Hn f TKOYj

E E Rd
d

where Yj j 1,2 E Y A iid



I I stochastic Optimization

Example Settings for so

Virtually all of regression

A large fraction of optimization
problems in Operations Research

computer Science S Engineering



II stochastic Optimization

The non Euclidean context emerges

Example 2 Recall that in Example I

P Y l Zz G Iz Ee Rd

argmax Ho E H OYB
OE Kd

what if instead

P Y I 12 4 Golz

argmax hCG E HCGYD
G E f R o D increasing



I II stochastic Optimization

Example 3 event occurs according
5 to prob measure 11

x

goodguys sprinkled
according to Poisson

xx x measure 0

x x exp prob ofdeath

h JefNdnJJoPfffRn.o a du

NdD exp O BK vftuD

Find argmin NO JO da b



I II stochastic Optimization

Define the EP parameter
T

E O Tn Halo h OEFn

v

scaling
error

Q 1 What are conditions for
sup I Hn hey o

O E Q

Q2 At what rate



I II stochastic Optimization

Answers to Qi and Q2 will be

stated in terms of entropy
or diversity or richness of the
class H O Yj OEO j 1,2 n

n HC Y

nigigitithivith

O

O O B



II stochastic Optimization

AGENDA

I Basic Results

i Donsker's thin for partial sums
ii EP for CDFs

Iii Quantile process

I M Estimation

4 Entropy
Ii Uniform convergence
iii Asymptotic equicontinuity i



L 2

WEAK CONVERGENCE ESSENTIALS

Today's Agenda

Demonstrate the first example
of weak convergence irinon Euclidean

space

Weak convergence
essentials

Specialize to CGD main

theorem i

Wiener measure Donsker's Thin



WEAK CONVERGENCE ESSENTIALS

Our treatment is on a metric

space S se where S is

a set and f is a metric on S

For N y Z E S

Ml f n g c o o

M2 fwy oiffn y
143 f ay fly.se
144 f x the.ly tfCy.z

see D 2011 or K 1978



WEAK CONVERGENCE ESSENTIALS

Reals IR II Function space
a

of of y

s R n

Kay la yl o.TV

I tw Measure Space M s CGD
By EM with

cat E Fy the y of.IE NtI yttH

KAY Ty sequence space 5 1
sup IEA Eff
2 CRd x G lqz y n ms

see 312011 fpe.yj suplegj h.glJEN



WEAK CONVERGENCE ESSENTIALS

The metric does a lot of work

Metric

Iv
Open sets

convergence1
continuityBord r algebra separability
completeness

sometimes the Bordo algebra is too big

so defining the metric is key to defining
the measurable space S S



WEAK CONVERGENCE ESSENTIALS

A probability measure on S is a

non negative countably additive set

f unction with PCs 1

Pn converges weakly to P means for A ES

Pn A PLA if PGA o

Notation

Pn p
i



WEAK CONVERGENCE ESSENTIALS

What is the relevance of
the P continuity set condition

P OA o

Understand by Analogy

In IR Xn X means

F Ct Ect at points t

where Fx is continous

Hft pnka.TT I P East



WEAK CONVERGENCE ESSENTIALS

Let X S S be a mapping from

Gr F P to the metric space
S

X is measurable Ffs X e FIS

Distribution of X is the probability
measure induced by X
P PX that is

PLA P x KA P x CAD

Ipfw X E A i



WEAK CONVERGENCE ESSENTIALS

i iv mean the same

i X X

Cii Pn P

Ciii X p

Cir Pn

And equivalent to

E fund EffHD
for all bounded uniformly continuous f



WEAK CONVERGENCE ESSENTIALS

Let's live in CGD today
n

k

i t

C c o D is the space of continuous

functions endowed with the

uniform topology

Tfa y la yl stop Htt yet i

s corresponding measurablespace



WEAK CONVERGENCE ESSENTIALS

Random Function RandomVector RandomVariable

R F P and X D CED

Tf X EFI then it is called a

random function
random variable

n

Tt X w Xlt w Itt X E FIR I

II it w X tho X tow XGnw

It t z C TYR
t

random vector



WEAK CONVERGENCE ESSENTIALS

Modulus of continuity

Mn S sup secs att

Is HES Ots E I

Mat quantifies
how E changes with

N 8 in the e s
o.TV

definition of continuity
I t

Examples
i If K is L Lipschitz Macs Ls

ii If k is Holder Macs a LS



WEAK CONVERGENCE ESSENTIALS

Suppose X X X are randomfunctions

Theorem 7.5 Sf

XI XI Xia Xt.it tii Xtn

Vt tz thEG.D
FD

and

slim linzsjpP m Ms e o

KC

then X X



WEAK CONVERGENCE ESSENTIALS

Kc means random function

changes can be controlled

n n

with
Ex 1 FD is not enough
l kn kn l a o and henceSan Sa

I I
In

f

Ex 2 FD is enough S _R



WEAK CONVERGENCE ESSENTIALS

Proof sketch of 7 5

FD implies Rito is tight
Rito tight Kc Pigtight
FD t Pn tight is sufficient



WEAK CONVERGENCE ESSENTIALS

Kc looks artificial

Is it too much

In short because we are in

C o D the answer is No

Kc is fundamental and controls

richness to just right extent i



WIENER MEASURE

Wienie measure W is a probability

measure on c having two

properties

A W ktExI e P EE du

B for OE to t E Eth I

Kt Rto i Nti Nt 7757k I

are i dependent under W



I W I E NER MEASURE

Two Crucial Things
I W Nti Nti

E di i 1,2 k

k

IT MEEEEi

Thus the finite dimensional
distributions are specified

t.EE giiZh faEHieEaE t.EE

2 The existence of W needs

to be proved at most one

sometimes none



DONS KER'S THEOREM

Lets assume W exists and construct

a sequence X such that

W

Let G Gz be i i d random

variables touch that Ekg o

and Van lg TE goo i

0 n 0

S

q g t then n



I DONSKER'S THEOREM

G n

f E Ej
fit't

l l l l l l l l t

Yn Yn Mn

XIcwj frnfsntftcnt lntfeqnt.it
tell

Notice that X e CED i



DONS KER'S THEOREM

Due to Theorem 7 5 we would

have proved
n

x w

if we can show FD and k c hold



I DONSKER'S THEOREM

Fixt

XIcwj frnsfniytcnt tntbq.EEorn

TEN O

Gindeberg Levy City by Chebyshev

Fixstwithset
o s t

1

Xiao Xiao Xiao

ftp SLnssCw SLntsCw SLnsgCwDtopCil

Ni Es Na



I DONSKER'S THEOREM

Hence

Cxnscwi.XIiwD fx7ws.xIwstxIws xEoD

r sNi.fsN.t Es Na

by mapping them

Fix tht tk lo't ta't ta th

xne.cwi.XI.wi XI.ws XIioi XI.io
ft Ni FEE Nz FEthNDf

This proves FD



DONS KER'S THEOREM

We will not prove KC
sorry but

see pp 88 90 in 1399

Theorem 8.2

Tf Gi Ga are ii d with mean zero

and variance E Ceo then

X W
I



DONS KER'S THEOREM

What have we skipped

1 Existence of W

2 Proof that X n i satisfies
KC

See pp 88 90 in 1399 for both

I



WEAK CONVERGENCE ESSENTIALS

Js Kc in Theorem 7.5 too much

Prohorov's Thm pp 58

FD t RC f Weak Convergence

And

Under separability and completeness
F D t R C f FD t KC

I



WEAK CONVERGENCE ESSENTIALS

Lets
go to DEO D

Recall that DGB is the

class of cadlag funclimes that is

eight continuous functions
with

left limits defined on E D
O

o
t

k l



EMPIRICAL PROCESSES

AGENDA

TH Step back

Il Generalization setup

HI Entropy S Examples

II ULIN



I

Suppose X Xz are i i d

real Valued random Variables

with cdf F

empirical calf

Free n Itami re R

I

2nd Fn Ece Fm re R
f

empirical process indexed by a



I

Glivenko Cantelli 1933

Fn F sup Free Fee
a's o

N RE IR

Donsker 195 2 Std Brownian Bridge
on Lo D

T

Zn I Bee nel

in DLR Il Hd i



I

what are the analogues

when X X tie in a more

general space X
e g CEO B

or Riemanian manifold

How to define Fees P Xen

when X n e X i



Natural Idea I

F n Pn too D

F n P C o B

The above suggests considering

Pn A and PLA for an

appropriate class of sets e

Ca A E X

Now ask
taupe PDA Playa's o



I

More conveniently we can ask

sup Pnf Pf
a si o

f E F

where F is a class of
heat valued functions having
domain X

1

Pnf n f Xj Pf Jf DP



Two Examples
I

initii

t

X CLAD

F projection functions

TITCH Htt tea.BY



Two Comments I

E Suppose X I R

Then

F indicator functions

Items KER

I



I

The richness or complexity

of F will determine the

existence and nature of the

GC and Donsker analogues

I



It

Lets Set
up



I

X Xz P are i i din X ft

e
g X Rd CGD etc

The Empirical Measure

Pn ri Easy
B A n 2 Xj



I

Pnf Pf

For f X IR

Pf If dP

Pnf If DR n f Xi



I

Empirical Process

Suppose F is a class

of real valued functions
defined on X

Pdf _rn Rf Pf

The stochastic process piftfEF
is called an empirical process

i



II
We hope to identify sufficient
conditions on F so that

Glivenko Cantelli Analogue

R P 5 sup Rf Pf
a's o

f EF
ga I

RIKKI
Donsker Analogue
rn R P G in ECF

where G is a P Brownian bridge



II

The sufficient conditions
will be phrased in terms

of some notion of the

complexity of F

So we now setup toward

entropy of F



I
Q norm

Q is a measure on X H

For l E r LD

t
go flflado

r

ti ta
go

Q distance

between fifa i



I
E cover

fi f f is said to be

an E cover for F if for any

f E F Ifj such that

f f j E E
r Q

fi f fm need not live in F



I

E
covering

number

Nr F Q e

if n
Jan LIQ e cover

ft fr tn of F

E entropy for metric entropy

Hr F Q e
log Nr F Q E



I
e cover with bracketing

N

f f is said to be
f I

an E cover with bracketingfor F

if for each f E F

U L

f f j ga
E E t j

L

3 j s t f j E f E tf i



e
covering with bracketing

Nr B F Q E

E cover with brae

inf n III

III

E entropy with bracket
ng

HrBCF Q e
log Nr F Q e

B



IE entropy for the sup
norm

f snuff fan

Halt e log N F e

where

Nao F e

inf n

Js ft t In s t
y

fend Efin f f j f
E

Notice no dependence on Q



Comments II

Q need not be a prob measure

ftp.o p but

Y'Isao ftp.a HfHo suplfcml
REX

Q indep

Hp F Q E E ftp.B F Q e Ve o

HpBCF Q E E Holt E if
Q is a prob measure



Entropy calculation examples
I

Example 1 finite support

F increasing functions

f CR E is where

I I neo

Then

Hao F e flog htt

VE O
y



Proof Sketch Th

Ltd

i

E i
BE i l

2E i i
E i l

K te te be

Suppose X ni na an

Ff
non decreasing fundimsf
on X such that

Fogle ie oeieted

F is an E net of F Also

I F
htt 4 no of non negative int

I

Solns to

Ved y tyzt tyEM is ftp.kI



HI

Example 2 boundedderivatives

F f G I G It H'le

Then for some constant Atm

Hao F E E At te o

I



Proof sketch
I

I

E ft
Eff

ao Ia
I l l l l l l l l l l

E any DE

soff I fin fall Eze

F au F ape E 3E 12 1,2

Nao F e E Lett 7h



HI

Example 3 Finite DimensionalSpace

Suppose Vi Uz Hd E LIQ

and

F f yq4n
0 0,0 OdeRd

and llflla.ae R

Then

Hz F E Q E d log 4th
i



HI

Example 3 Finite DimensionalSpace

Suppose Vi Uz Hd E LIQ

and

F f
y

4n 0 0,0 0deRd

and llflla.ae R

1

Then

Hz F E Q E d log 4th
i



Proof Sketch It

Find balls 13 Oct E j 1,2 N

such that the B o R ball in Rd

with Euclidean metric is covered

pom
A Beer

f I EI often is

1
And

µ 4124,42
d



HI
Other Examples Birmsaonwmjak.int

F f IR a D Hft

then FA s t J last
x

HB F E Q s Az V E o

2 F f ED a D ft'T's

then IA s.t

HB F E E E VE o
Im



i

The Basic ULLN

Suppose F is such that

Hi B F E P so He o

Then

R P sup Rf Pf
a's o

f EF
f



Proof Sketch II

we can find Eff fff so that

for each f e F we find i s t

Rf Pf E Pri PHI t e

Rf Pf 3 Pn PHI e

Since Nan for larger
imagen Rn Pdf E e

ringIn Pn Bfi E

e i

Use l and 2



AGENDA

f Strengthen Basic ULLN

Suppose 43 Ht
Hood Pen and

IH F E B P
0 HE o

h

Then Awhirl
t

R P sup Rf Pf
as
so

f EF

I

II Example classes Vc



TWO KEY MACHINERY

C Chaining

Ii Symmetrization



SYMMETRIZATION

means approximating

R P using R R
N N

where

Xi Xa X
d
p

Xi Xi X
d
p

X X X int Xi Xi X i



SYMMETRIZATION LEMMA

Suppose that tf e F s o

P Rf Pf Sh f 2

Then

P R P s
N

f 2 P R R's



Proof Sketch

P eMf If DCR P s

P ff dfPn P s

f 2P ff dfPn P s A

ff d Pi P f E

f2P ff d Pn Pi

f 2PffeMf ffd R Pi E



Why symmetrization

Wi W Wn int X X Xn Xi X
1

Rademiachin Wj id
w p k

sequence
I w p Y

Then for each f E F

f Xi f Xi i z n

D Wif Xi f Xi i z

Okay So what



Notice

p R R a

Et P y p n Iff Xi f Xi E
i

P f p n IIWithXi ft Xi E

E 2 P Stutz n Izwit ki



The tail probability

P IIE n'IzwitHi

is
easy

to work with

1

Okay so what



Suppose that we show

P I P n 2WiHXi SE
P o

Then R p p
o

l

s'ymmetrization

pn p
a's

something

Pollard 1984

1

Therefore R P as
o



Lets prove 1 for bounded r.rs

Assume
sfeupy Ht Hot Roo

We will choose An E X s t

P f P n WiHXi E
En

E P En X X XD c An X I

t xp X X XD c Ai

O



Choose

An rn
so c R H Ift Ez B VR

With some work and Hoeffding 1963

P En X X XD c An E

c exp 14 2

And
1

P Ai o if Intzft 8 Pn



Key Lemma
envelope

Suppose F sup At Hook Rso
f EF

and that

n
Hz F S R

P 0 V 8 o

I

Then

Pn P o i



Theorem

Suppose I Fdp Loo

and suppose

n
H F S R

P 0 V 8 o

Ent
Then

Pn P 0

I



Proof Sketch Choose R so that

R P sup f Rf Pf
f c F

III DIR P

t J FDR J FDP
F R F R

28 as for SS for longer
large n



Proof sketch contd

Lets deal with the first term

Define the truncated class

Fr f Iff E R fe F

For f f z E F i

Iff fI'dl E 212J If f Idk



Proof sketch contd

Under Ent this means

4 Hz Fr Sr Pn 0 V 8 o

Therefore Glivenko Cantelli

holds on Fp

I



Which Is satisfy the

condition

t H F S R
P

o

Many useful classes of

satisfy this property Let's i

see one such



Vapnik Cherronenkis Vc

Subgraph Classes

D collection of subsets of X

X X

domain off cF

card Dn Xi Xu Xn D c D

ix a'a x x i

0 6
x



m9n

sup LEG Xz Xn X X Xn

V D inf n i mouse I

V D is called the index

of the class D

D is called a VC class if
D en



Example 1

D fat te R

Then

m9n ntl so that

D is a VC class

x x x x x x x



Example 2

D fat te Rd

Then

m9n Dd So that

D is a VC class

x
x

x
a

v



Example 3

D n Ca 07 y Oe Rdye
X x
o

X T

X

t

X

w
X i

mo n E 2d nd

V D E dt 2


