

Contact: pasupath@purdue.edu

Why Study Empirical Processes? Four motivating contexts I Estimate a cdf or a quantile function. J Stochastic Optimization & Stochastic Fixed Roint Problem in <u>Euclidean</u> space. Il Stochastic Optimization & Stochastic Fixed Roint Problem in "non standard" spaces. Analyzing the bootstrap. X

I. Estimate a CDF, Quantile
What can we say about
$$F_n$$

as an estimator of F?
Specifically:
(i) $\sup_{z} |F_n(x) - F(x)| \xrightarrow{a:s} 0$?
(ii) How fast?
Analogous questime about Q_n
as an estimator of F^{-1} .

I. Estimate a CDF, Quantile
The principal route to
answeing such questions
analyzes the empirical process:

$$n^{p}(P_{n}(x) - P(x))$$

 $\beta_{n}(x) = \sqrt{n}(F_{n}(x) - F(x)), -\infty < x < \infty$
 $q_{n}(y) = \sqrt{n}(Q_{n}(y) - F(y)), 0 < y < 1$

I. Estimate a CDF, Quantile
For example, if
$$X_j \in [0,1], j=1,2,...,n$$

then,
 $B_n \Longrightarrow B$ (1)
Where B is the Grounsian random
element of D[0,] specified by
 $IE [B(t)] = 0, IE [B(s) B(t)] = F(s \land t) - F(s) F(t).$
(Theorem 14.3 in Billingeley, 1999.)
Beware: (1) is weak convergence in
Metric Space.

I. Estimate a CDF, Quantile So what? Weak Invariance Principle Because of (1), it may be expected that "operations" on Br will "be have like operations" of B. Hence the behavior of Fn "can be approximated by passing to the limit.

I. Estimate a CDF, Quantile
Two Classic Examples (Dascrupta, 2011)
(i) Kolmogorov-Smirnov Statistic
sup
$$|\beta_n(x)| \Longrightarrow \sup_{0 \le x \le 1} |B(x)|$$

 $0 \le z \le 1$
where $\sup_{0 \le x \le 1} |B(x)|$ has the
 $0 \le z \le 1$
 $known cdf 1 - 2 \underset{k=1}{\overset{\infty}{=}} (-1)^{k-1} e^{-2k^2y^2}y_{>0}$
(ii) Cramer-von Mises
 $\int_{0}^{1} \beta_n^2(x) dF \Longrightarrow \int_{0}^{1} B^2(x) dx$

I. Estimate a CDF, Quantile The analogous setting for the quantile process Suppose F is absolutely continuous with density f>0, fdifferentiable and $F(z)(1-F(z)) \frac{f(z)}{f^2(z)}$ is uniformly bounded on supp. (f). Then, for any ce(0.) $\sup_{C \leq y \leq I-C} q_n(y) f(F(y)) \Longrightarrow \sup_{C \leq y \leq I-C} |B(y)|$

I. Estimate a CDF, Quantile
Stepping back...
"scaling" "parameter"

$$\beta_n(x) = \sqrt{n} \left(\frac{F_n(x) - F(x)}{F_n(x) - F(x)} \right), x \in \mathbb{R}$$

"est. error"
 $\Longrightarrow \begin{cases} B(x), x \in \mathbb{R} \end{cases}$ "Graussian
process
Notice: We can also write the above as
 $\beta_n(x) = \sqrt{n} \left(\frac{P_n(-9, z)}{F_n(-9, z)} - P(-9, z) \right), x \in \mathbb{R}$
 $\Longrightarrow \begin{cases} P_B((-9, z)), x \in \mathbb{R} \end{cases}$

I Stochastic Optimization
Example 1
Relate employment with education.
Data (Yi, Zi),
$$i=1,2,...n$$

where
 $Y_i = \begin{cases} 1 & \text{if } i \text{ has a job.} \\ 0 & \text{otherwise} \end{cases}$
 $Z_i \text{ is the education of individual i.}$
Assume:
 $P(Y=1 | Z=z) = G_i(O^* z), O^* \in \mathbb{R}^d$
where $G_i(\xi) = (1+e^{-\xi})^T, \xi \in \mathbb{R}$.

I Stochastic Optimization
Optimization Problem (Classic MLE)
Find,
$$\theta_n \in \operatorname{Argmax} H_n(\theta)$$
 (P_n)
where
 $H_n(\theta) := \frac{1}{n} \sum_{j=1}^{n} H(\theta, Y_j)$
 $H(\theta, Y) := \log G_1(\theta Z) (1 - G_1(\theta Z))^{1-Y}$
 $\theta^* := \operatorname{argmax} h(\theta) = IE[H(\theta, Y)]$

I Stochastic Optimization
In answeing questions in A. & B.
EP is the natural viewpoint. Why?
Define the EP parameter

$$\mathcal{E}_n(\mathcal{O}) = \sqrt{n} \left(\frac{H_n(\mathcal{O}) - h(\mathcal{O})}{H_n(\mathcal{O}) - h(\mathcal{O})} \right), \mathcal{O} \in \mathbb{R}^d}$$

scaling error
Principle: If \mathcal{E}_n can be shown
to converge to a Gaussian process,
then, answers to (i) and (ii) become
possible.

I Stochastic Optimization
Three is nothing special about
the MLE example.
General Stochastic Optimization:
Find argmin
$$h(0) := \mathbb{E}[H(0, Y)]$$

 $\partial \in \Theta \subseteq \mathbb{R}^d$
Where Y in (Y, A) , $H : \mathbb{R}^d \times Y \to \mathbb{R}$.
(50)

I Stochastic Optimization
Find argnin
$$h(\Theta) := \mathbb{E}[H(\Theta, Y)]$$

 $\Theta \in \Theta \subseteq \mathbb{R}^{d}$
Where Y in (Y, A) , $H : \mathbb{R}^{d} \times Y \to \mathbb{R}$.
"Sample Verkion" of (SO) .
Find argmin $H_{n}(\Theta) := \frac{1}{n} \int_{d=1}^{n} H(\Theta, Y)$
 $\Theta \in \Theta \subseteq \mathbb{R}^{d}$
Where $Y_{j}, j = 1, 2, ... \in (Y, A)$, i.i.d.

II Stochastic Optimization

Example Settings for SO.
Virtually all of regression
A large fraction of optimization problems in Operations Research, Computer Science, & Engineering.

II Stochastic Optimization
The non-Euclidian context emerges...
Example 2. Recall that in Example 1,

$$P(Y=1 | Z=z) = G_1(O^* z), O^* \in \mathbb{R}^d$$

 $ang \max h(O) := \mathbb{E}[H(O,Y)]$
 $\Theta \in \mathbb{R}^d$
What if, instead:
 $P(Y=1 | Z=z) = G_1(Z)$
 $ang \max h(G) := \mathbb{E}[H(G,Y)]$
 $G_1 \in \mathcal{G} = \{\mathbb{R} \rightarrow [O, I], increasing\}$

WEAK CONVERGENCE ESSENTIALS

L.2

WEAK CONVERGENCE ESSENTIALS

Our treatment is on a metric
space
$$S = (S, P)$$
, where S is
a set and P is a metric on S.
For $\chi, \chi, z \in S$

$$(M1) \quad P(\chi, \chi) \in [0, \infty)$$

$$(M2) \quad P(\chi, \chi) = 0 \quad i \notin \chi = \chi$$

$$(M3) \quad P(\chi, \chi) = -P(\chi, \chi)$$

$$(M4) \quad P(\chi, z) \leq -P(\chi, \chi) + P(\chi, z)$$
(See D2011 or K1978)

WEAK CONVERGIENCE EGSENTIALS
A probability measure on
$$\&$$
 is a
non-negative, countably additive set
function with $P(s) = 1$.
P_n converges neakly to P means, for AES
 $P_n(A) \longrightarrow P(A)$ if $P(\partial A) = 0$.
Notation:
 $P_n \implies P$

WEAK CONVERGENCE EGSENTIALS
What is the relevance of
the P-continuity set condition
$$P(\partial A) = o$$
?
Undustand by Analogy
In R, $X_n \Rightarrow X$ means
 $F_x(t) \rightarrow F_x(t)$ at points to
where F_x is continuous
 $F_x(t) = P_n(-\infty,t]$; $F_x(t) = P(-\infty,t]$

WEAK CONVERGENCE ESSENTIALS Let $X: \Omega \longrightarrow S$ be a mapping from (Q, J, P) to the metric space S. X is measurable 3/S. (XE 3/S) Dishibution of X is the probability measure induced by X. $P = PX^{-1}$, that is: $P(A) = (PX^{-1})(A) = P(X^{-1}(A))$ $= \mathbb{P}(w: X(w) \in A)$

WEAK CONVERGENCE ESSENTIALS

WEAK CONVERGENCE EGSENTIALS
Random Function; Random Vector; Random Variable.

$$(-\Omega, \exists, \mathbb{P})$$
 and $X: \Omega \rightarrow C[0, \mathbb{I}]$
If $X \in \exists/C$, then it is called a
random function
 $\Gamma_{t} X (\omega) := X(t, \omega), \ \Pi_{t} X \in \exists/R$
 $\Pi_{t_{1}, t_{2}, \cdots t_{k}}^{T} (\omega) := (X(t_{1}, \omega), X(t_{2}, \omega), \dots, X(t_{k}, \omega))$
 $\Pi_{t_{1}, t_{2}, \cdots t_{k}}^{T} \chi (\omega) := (X(t_{1}, \omega), X(t_{2}, \omega), \dots, X(t_{k}, \omega))$
 $\Pi_{t_{1}, t_{2}, \cdots t_{k}}^{T} \chi (\omega) := (X(t_{1}, \omega), X(t_{2}, \omega), \dots, X(t_{k}, \omega))$
 $\Pi_{t_{1}, t_{2}, \cdots t_{k}}^{T} \chi \in \exists/R^{k}$
 \longrightarrow random vector

WEAK CONVERGENCE EGSENTIALS
Suppose X, X', X²,... are handom functions.
Theorem 7.5 If

$$(X_{t_{1}}^{n}, X_{t_{2}}^{n}, ..., X_{t_{k}}^{n}) \Rightarrow (X_{t_{1}}^{n}, X_{t_{2}}^{n}, ..., X_{t_{k}})$$

 $\forall t_{i}, t_{2}, ..., t_{k}^{c}[e]$
and
 $\lim_{s \to o} \lim_{n \to \infty} P(m(X^{n}, s) > \varepsilon) = 0,$
 KC
then $X^{n} \Rightarrow X$.

WEAK CONVERGENCE ESSENTIALS

(Proof Sketch of 7.5) - (FD) implies PnT, is tight. $-\{P_n T_n^{-1}\}$ tight + KC \iff $\{P_n\}$ tight. - FD + {Pn} tight is sufficient.

WEAK CONVERGENCE ESSENTIALS

In short, because we are in C[0, I], the answer is "No." (KC) is fundamental and controls "richness" to just right extent.

WIENER MEASURE

Wiener measure, W, is a probability measure on (C, C) having two properties. $A W \left[x_{t} \leq x \right] = \frac{1}{\sqrt{2\pi t}} \left[e^{x} p \left\{ -\frac{1}{2} \frac{u^{2}}{t} \right\} du$ B) for $0 \le t_0 \le t_1 \le \dots \le t_k = 1$, $\chi_{t_1} - \chi_{t_0}$, $\chi_{t_2} - \chi_{t_1}$, ..., $\chi_{t_k} - \chi_{t_{k-1}}$ are independent under W.

WIENER MEASURE Two Crucial Things. 1. $W[\chi_{\pm i} - \chi_{\pm i+1} \leq \alpha_{i}, i = 1, 2, ..., k]$ $= \prod_{i=1}^{k} \frac{1}{\sqrt{2\pi(t_{i}-t_{i-1})}} \int exp\left\{-\frac{1}{2} \frac{u^{2}}{t_{i}-t_{i-1}}\right\}$ Thus, the finite-dimensional distributions are specified. $\begin{pmatrix} \int_{\mathcal{Z}_{1},\mathcal{Z}_{2},...,\mathcal{Z}_{k}} (z_{1},z_{2},...,z_{k}) = \int_{\mathcal{Z}_{1},...,\mathcal{Z}_{k}} (z_{1},j_{1}) \int_{\mathcal{Z}_{2},...,\mathcal{Z}_{k}} (z_{2}-z_{1}) \cdots \int_{\mathcal{Z}_{k},...,\mathcal{Z}_{k}} (z_{k}-z_{k-1}) \\ z_{1},x_{1},x_{1},...,x_{1},...,x_{1} \end{pmatrix}$ 2. The existence of W needs to be proved: at most one, sometimes none.

Let x = W exists, and construct a sequence $\{X^n\}$ such that $X^n \Rightarrow W$.

Let ξ_{1}, ξ_{2}, \dots be i.i.d random Variables buch that $\mathbb{E}[\xi_{1}] = 0$ and $\operatorname{Var}(\xi_{1}) = O^{2} \in (0, \infty)$.

 $S_{n} = \begin{cases} 0 & n=0 \\ \xi_{1} + \xi_{2} + \dots + \xi_{n}, & n \ge 1 \end{cases}$

Heno, $\left(X_{s}^{n}(w), X_{t}^{n}(w)\right) = \left(X_{s}^{n}(w), X_{s}^{n}(w) + X_{t}^{n}(w) - X_{s}^{n}(w)\right)$ $\implies (\sqrt{s} N_{1} \sqrt{s} N_{1} + \sqrt{t-s} N_{2})$ (by mapping thm)

 $\frac{F_{1x} t_{1}, t_{2}, \dots t_{k}}{\circ t_{1} t_{2} t_{3} t_{4} \cdots t_{k}}$ $\left(X_{\pm_{1}}^{\eta}(w), X_{\pm_{2}}^{\eta}(w) - X_{\pm_{1}}^{\eta}(w), \ldots, X_{\pm_{n}}^{\eta}(w) - X_{\pm_{n}}^{\eta}(w)\right)$ $\implies \left(\sqrt{t_1} N_1, \sqrt{t_2} t_1 N_2, \dots, \sqrt{t_k} t_{k_1} N_k\right)$ This proves (FD).

What have we skipped? (1) Existence of W (2) Roof that Xⁿ, n=1 satisfies (KC). See pp. 88-90 in B99 for both.

Js (KC) in Theorem 7.5 too much? (Prohorov's Thm., pp. 58) FD + RC > Weak Convergence And, Under separability and completeness FD + RC > FD + KC.

WEAK CONVERGENCE ESSENTIALS Lets go to D[0,]. Kecall that D[0,] is the Class of cadlag functions, that is, light continuous functions with left limits, defined on [0,]. \rightarrow

AGENDA

(I) Step back...
(II) Generalization setup.
(III) Entropy & Examples.
(IV) ULLN (?)

$$T$$
Suppose $X_1, X_2, ...$ are i.i.d
real-valued random variables
with cdf F.
empirical cdf .
 $F_n(x) := n^{-1} \int_{j=1}^{n} I_{(-\infty,x]d}(x), x \in \mathbb{R}$
 $Z_n(x) := \sqrt{n} (F_n(x) - F(x)), x \in \mathbb{R}$
empirical process (indexed by x)

(Glivenko-Cantelli, 1933) $\left\|F_{n}-F\right\|_{\infty} := \sup_{x \in \mathbb{R}} \left|F_{n}(x)-F(x)\right| \xrightarrow{a \cdot s \cdot} 0$ (Donsker, 1952) std. Brownian Bridge. on [0,]. $Z_n \Rightarrow Z \equiv \{B(x), x \in [0,1]\}$ in $\mathbb{D}(\mathbb{R}, \|\cdot\|_{\infty})$.

What are the analogues When X1, X2,... tie in a more general space X, e.g., C[0,1], or Riemanian manifold? How to define $F(x) = P(X \le x)$ When X, z e X?

Natural Idea : $F_{n}(x) = P_{n}((-\infty, x])$ $F(x) = P((-\infty, x])$ The above suggests considuing $P_n(A)$ and P(A) for an appropriate class of sets C, $C \Rightarrow A \subseteq X$. Now ask $\sup_{A \in C} |P_n(A) - P(A)| \xrightarrow{a.s.} o ?$

$$\begin{array}{l} \fboxleft \hline \label{eq:powersense} \end{array} \\ \begin{array}{l} More conveniently, we can ask \\ sup & \left| P_{n}f - Pf \right| \stackrel{a.s.}{\rightarrow} o ? \\ f \in \mathfrak{F} \end{array} \\ \hline \\ where & \mathfrak{F} is a class of \\ real-valued functions having \\ domain & \chi. \end{array} \\ \left(P_{n}f = n^{-1} \overset{n}{\underset{j=1}{\rightarrow}} f(X_{j}); \ Pf = \int f \, dP \right). \end{array}$$

Two Comments Ţ (II) Suppose $X \equiv \mathbb{R}$. Then I:= "indicator functions" $= \left\{ \mathbb{I}_{(-\infty, \mathbf{x}]}^{(\cdot)}, \mathbf{x} \in \mathbb{R} \right\}$

I Lets Setup...

 $X_1, X_2, \ldots \sim P$ are i.i.d in (χ, A) e.g.: $\chi = \mathbb{R}^d$, $C[0, \overline{]}$, etc. The Empirical Measure $P_n := n^{-1} \sum_{j=1}^n S_{X_j}$ $P_n(A) = n^{-1} \sum_{i=1}^{n} 1_A(X_i)$

Empirical Process
Suppose
$$\exists$$
 is a class
of real-valued functions
defined on χ .
 $\beta_n(f) := \sqrt{n} (P_n f - P_f)$
The stochastic process $\{B_n(f), f \in f\}$
is called an empirical process.

We hope to identify sufficient
conditions on
$$\exists$$
 so that:
(Glivenko-Cantelli Analogue)
 $\|P_n - P\|_{\infty}^* = (\sup_{f \in \exists} |P_n f - Pf|)^* \xrightarrow{a:s} o$
 $f \in \exists z: \exists \to R, \|z\|_{\infty}^{
 (Donsker Analogue)
 $\sqrt{n}(P_n - P) \Rightarrow G in l^{\circ}(\exists)$
Where G is a P-Brownian bridge.$

lhe sufficient conditions will be phrased in terms of some notion of the "complexity" of F. So, we now set up toward entropy of F.

L. (Q) norm Q is a measure on (χ, A) . For $| \leq r < \infty$, $\|f\|_{n,Q} := \left(\int |f|^n dQ\right)^{1/n}$ $\|f_1 - f_2\|_{n,Q}$: $L_{r}(Q)$ distance between f_1, f_2 .

E-cover {f1, f2,..., fn { is said to be an E-cover for 7 if for any $f \in F$, $\exists f_i$ such that $\left\| f - f_{j} \right\|_{n,Q} \leq \varepsilon.$ $(f_1, f_2, \dots, f_n \text{ ned not live in } \mathcal{F})$

$$\mathbf{D}$$

$$E-covering number.$$

$$N_{n}(\exists, Q, \varepsilon)$$

$$= inf \{n: \exists an L_{n}(Q) \varepsilon - cover\} \{ \exists inf 1, \dots, fn \} \notin \exists$$

$$E-entropy \text{ (or metric entropy)}$$

$$H_{n}(\exists, Q, \varepsilon) := \log N_{n}(\exists, Q, \varepsilon)$$

E-cover with bracketing. ${ [f_j, f_j]_{j=1}^n }$ is said to be an E-cover with bracketing for F if for each f∈ F: $\left\| f_i^{U} - f_j^{L} \right\|_{\mathcal{R},Q} \leq \varepsilon \quad \forall j.$ $\exists j s t f'_i \leq f \leq f'_i$

$$\begin{aligned}
\begin{bmatrix}
E - entropy fr the sup norm \\
\|f\|_{\infty} := \sup_{x \in X} |f(x)| \\
H_{\infty}(f, e) := \log N_{\infty}(f, e) \\
H_{\infty}(f, e) := \log N_{\infty}(f, e) \\
Where \\
N_{\infty}(f, e) := \\
& \text{if } \{f_{1}, f_{2}, \dots, f_{n}\} \text{ s.t. } \\
& \text{if } \{n : \sup_{f \in \mathcal{F}} \min_{f \in \mathcal{F}} \|f - f_{d}\|_{\infty} = e \\
& \text{Notice: no dependence on } Q
\end{aligned}$$

$$\underbrace{Comments}{D}$$
- Q need not be a prob. measure

- $\|f\|_{p,Q} \uparrow p$ but
$$\lim_{p \to \infty} \|f\|_{p,Q} \neq \|f\|_{\infty} = \sup_{z \in X} |f(z)|$$
Q-indep.

- $H_p(\exists, Q, \varepsilon) \leq H_{p,B}(\exists, Q, \varepsilon) \forall \varepsilon \gg$

$$H_{p,B}(\exists, Q, \varepsilon) \leq H_{\infty}(\exists, \varepsilon) \downarrow_{\varepsilon}$$
Q is a prob. measure.
Entropy calculation examples.

$$Example \mid (finite support)$$

$$\exists := \begin{cases} increasing functions \\ f: X \subseteq R \rightarrow [0,] where \\ |X| = n < \infty \end{cases}$$
Then:

$$H_{\infty}(\exists, \epsilon) \leq \frac{1}{\epsilon} \log(n + \frac{1}{\epsilon})$$

$$\forall \epsilon > 0.$$

$$\begin{aligned}
\underbrace{\text{Example 2 (bounded drivatives)}}_{\text{F}} &= \left\{ f: [0, 1] \rightarrow [0, 1], |f'| \leq 1 \right\}.
\end{aligned}$$
Then, for some constant A<0,
$$H_{\infty}(\mathcal{F}, \varepsilon) \leq A \underset{\varepsilon}{\underline{1}} \quad \forall \varepsilon > 0.
\end{aligned}$$

$$\begin{split} & \overbrace{II} \\ & \underbrace{\mathsf{Ex} \ ample \ 3} \ (\mathsf{Finite \ Dimensional \ Space}) \\ & \mathsf{Suppose} \ \ \forall_1, \ \forall_2, \ldots, \ \forall_d \ \in \mathsf{L}_2(\mathbb{Q}) \\ & \mathsf{and} \\ & \mathfrak{I} := \left\{ f = \int_{k=1}^{d} \theta_k \psi_k : \ \theta = (\theta_1, \theta_2, \ldots, \theta_d) \in \mathbb{R} \\ & \mathsf{and} \ \ \|f\|_{q, \mathbb{Q}} \leq \mathbb{R} \\ & \mathsf{Iffen}, \\ & \mathsf{H}_2(\mathcal{F}, \varepsilon, \mathbb{Q}) \leq d \log\left(\frac{4\mathbb{R}+\varepsilon}{\varepsilon}\right) \end{split}$$

$$\begin{split} & \underbrace{\text{Example 3}}_{k=1} \left(\begin{array}{c} \text{Finite Dimensional Space} \\ \text{Suppose } \psi_1, \psi_2, \dots, \psi_d \in L_2(\mathbb{Q}) \\ \text{and} \\ & \exists := \left\{ f = \int_{k=1}^{d} \theta_k \psi_k : \theta = (\theta_1, \theta_2, \dots, \theta_d) \in \mathbb{R} \\ & \text{and} \quad \|f\|_{q, \mathbb{Q}} \leq \mathbb{R} \\ \end{array} \right\} \\ & \text{Then,} \\ & H_2\left(\exists_{j} \in \mathbb{Q}\right) \leq d \log\left(\frac{4R^2 + \varepsilon}{\varepsilon}\right) \\ \end{split}$$

Proof Sketch Find balls $B(O^{(j)}, \frac{\varepsilon}{R}), j = 1, 2, ..., N$ such that the B(0,R) ball in \mathbb{R}^d with Euclidean metric is covered. × 0(i) B(o, R) $\begin{cases} \widetilde{f} : \widetilde{f} = \sum_{k=1}^{d} \mathcal{O}_{k}^{(j)} \psi_{k}, j = 1, 2, \dots N \end{cases}$ And, $N \leq \left(\frac{4R + \varepsilon_{R}}{\varepsilon_{R}}\right)^{d}$

The Basic ULLN Suppose I is such that $H_{LB}(\exists, \epsilon, P) < \infty \quad \forall \epsilon > 0.$ Then $\left\| P_{n} - P \right\|_{\infty} = \sup_{f \in \mathcal{F}} \left| P_{n}f - Pf \right|^{a:s}$

$$\begin{array}{l} \frac{Proof}{Sketch} \qquad ()\\ \hline We \ can \ find \ \left\{ \left[f_{d}^{\perp}, f_{d}^{\perp}\right]_{j=1}^{N} \right\} \ so \ that} \\ for \ each \ fe \ f, \ We \ find \ i \ s.t \\ \hline P_{n}f - Pf \ \leq (P_{n} - P)f_{d}^{\perp} + \varepsilon \\ P_{n}f - Pf \ \geq (P_{n} - P)f_{d}^{\perp} - \varepsilon \\ Since \ N < \infty, \ for \ large \ n, \\ & max \ |(P_{n} - P)f_{d}^{\perp}| \leq \varepsilon \\ & max \ |(P_{n} - P)f_{d}^{\perp}| \leq \varepsilon \\ & max \ |(P_{n} - P)f_{d}^{\perp}| \leq \varepsilon \\ & max \ |(P_{n} - P)f_{d}^{\perp}| \leq \varepsilon \\ & 1 \leq j \leq N \end{array}$$

Use (1) and (2).

AGENDA J Strengthen Basic ULLN. Suppose | sup ||f||_odP<0 and . $\underline{H}_{1}(\underline{F}, \underline{\varepsilon}, \underline{P}_{n}) \xrightarrow{P} O \quad \forall \underline{\varepsilon} > 0.$ My X2 Then, $\|P_n - P\| := \sup_{\infty} |P_n f - P_f| \xrightarrow{a:s.} 0$ fef II. Example Classes (VC)

SYMMETRIZATION.

means approximating $\|P_n - P\|_{\infty}$ using $\|P_n - P_n'\|_{\infty}$ Where: $X_1, X_2, \ldots, X_n \stackrel{\text{id}}{\sim} P$ $X'_{1}, X'_{2}, \dots, X'_{n} \xrightarrow{iid} P$ $(X_1, X_2, \dots, X_n) \stackrel{\text{ind}}{\sim} (X'_1, X'_2, \dots, X'_n)$

SYMMETRIZATION LEMMA Suppose that YJE J, S>0 $P\left(\left| P_n f - Pf \right| > \delta/2 \right) \leq \frac{1}{2}$. Then, $\mathsf{P}\left(\left\| \mathsf{P}_{\mathsf{n}} - \mathsf{P} \right\|_{\infty} > \mathsf{S}\right)$ $\leq 2 P\left(\left\| P_{n} - P_{n}' \right\|_{\infty} > S_{2} \right)$

Proof Sketch. $P(sup | \int fd(P_n - P) > s)$ $\langle P(| f^* d(P_n - P) > s)$ $\leq 2P(||f^*d(P_n-P)| > s$ $\left| \int f^* d\left(P'_n - P \right) \leq \frac{s}{2} \right|$ $\leq 2 P\left(\left|\int f^* d\left(P_n - P'_n\right)\right| > \delta/2\right)$ $\langle 2P(sup)|\int fd(P_n-P_n')|>\frac{s}{2}$

Why symmetrization? $(W_1, W_2, \dots, W_n) \stackrel{\text{ind}}{\sim} (X_1, X_2, \dots, X_n, X_1, \dots, X_n)$ (Rademachin sequence) J iid SI WP 1/2 -1 WP 1/2 Then, for each f E F, $\begin{cases} f(X_i) - f(X'_i) : i = 1, 2, ..., n \end{cases}$ $\stackrel{\text{d}}{=} \begin{cases} W_i(f(X_i) - f(X'_i)): i = 1, 2, ..., n \end{cases}$ Okay. So what?

Notice: $P\left(\left\|P_{n}-P_{n}'\right\|_{\infty}>s_{2}\right)$ $\stackrel{\text{def.}}{=} P\left(\sup_{i \in I} \left| \frac{1}{n} \sum_{i \in I} f(X_i) - f(X_i) \right| > \frac{g}{2} \right)$ $= \mathbb{P}\left(\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} W_{i}(f(X_{i}) - f(X_{i})) \right| > \frac{g}{2}\right)$ $\leq 2 P\left(\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} W_{i} f(X_{i}) \right| > \frac{s}{4} \right).$

The tail probability $P\left(\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}W_{i}f(X_{i})\right| > \frac{s}{4}\right)$ is easy to work with. Okay, so what?

Suppose that we show:

$$P\left(\sup_{f\in \exists} \left| \frac{1}{n} \sum_{i=1}^{2} W_{i} f(X_{i}) \right| \geq \frac{s}{4} \right) \xrightarrow{P} o.$$

$$(1)$$
Then, $\left\| P_{n} - P \right\|_{\infty} \xrightarrow{P} o.$
(symmetrization)

$$\left\| P_{n} - P \right\|_{\infty} \xrightarrow{a \cdot s.} \text{ something.}$$
(Polland, 1984)
Therefore, $\left\| P_{n} - P \right\|_{\infty} \xrightarrow{a \cdot s.} o.$

Lets prove (1) for bounded n.v.s. Assume $\sup_{f \in \mathcal{I}} \|f\|_{\infty} \leq \mathbb{R} < \infty$. We will choose $A_n \subseteq X^n s.t.$ $P\left(\underset{f\in\mathcal{F}}{\sup}\left|\frac{1}{n}\sum_{i=1}^{n}W_{i}f(X_{i})\right|>\frac{s}{4}\right)$ $\leq P(E_n | (X_1, X_2, \dots, X_n) \in A_n) \times I$ $+ I \times P((X_1, X_2, \dots, X_n) \in A_n^c)$ \longrightarrow O.

Choose:

$$A_{n} = \begin{cases} \sqrt{n} & \frac{s}{s} \ge c \left(R H_{2}^{V_{2}}(\mathfrak{F}, \frac{s}{32}, P_{n}) \vee R \right) \end{cases}$$
With some work, and Hoeffding (1963)

$$P(E_{n} \mid (X_{1}, X_{2}, ..., X_{n}) \in A_{n}) \le c \exp \left\{ -\frac{n S^{2}}{64c^{2}R^{2}} \right\}$$
And:

$$P(A_{n}^{c}) \rightarrow o : \psi_{1} : H_{2}(\mathfrak{F}, S, P_{n}) \xrightarrow{P} o : \forall s > 0.$$

Key Lemma
"envelope"
Suppose
$$F := \sup_{f \in \exists} \|f\|_{\infty} \leq R < \infty$$
,
fed
and that
 $+ H_2(\exists, \delta, P_n) \xrightarrow{P} o, \forall \delta > o.$
Then,
 $\|P_n - P\|_{\infty} \xrightarrow{a.s.} o.$

Theorem.
Suppose
$$\int F dP < \infty$$
,
and suppose
 $+ H_{1}(\exists, \delta, P_{n}) \xrightarrow{P} o, \forall \delta > 0.$
Then,
 $\|P_{n} - P\|_{\infty} \xrightarrow{a.s.} o.$

(Ŧ) Proof Sketch. Choose R so that $\left\| \begin{array}{c} P_n - P \right\|_{\infty} := \sup_{f \in \mathcal{F}} \left| \begin{array}{c} P_n f - P f \\ f \in \mathcal{F} \end{array} \right|$ $\leq \sup_{f \in \mathcal{F}} \left| \int f d(P_n - P) \right|$ + $FdP_n +$ FdPF>R <28 a.s. frr longe n.

$$\frac{Proof}{Proof} \frac{Sketch}{Sketch} = contd...$$
Let's deal with the first team.
Define the truncated class.

$$\exists_{R} := \begin{cases} f I \{ f \leq R \} : f \in \exists \end{cases}$$
For $f_{1}, f_{2} \in \exists$,

$$\int (f_{1} - f_{2})^{2} dP_{n} \leq aR \int |f_{1} - f_{2}| dP_{n}$$

Proof Sketch. contd...
Under (Ent), this means

$$\frac{1}{n}$$
 H₂ ($\mathfrak{F}_{R}, \mathfrak{S}, \mathfrak{P}_{n}$) $\xrightarrow{\mathfrak{P}} \mathfrak{O}$ $\forall \mathfrak{S} > \mathfrak{O}.$
Therefore, Gilivenko-Cantelli
holds on \mathfrak{F}_{R} .

$$Vapnik - Chervonenkis (VC)$$

$$Subgraph Classes.$$

$$D := collection of subsets of X
(domain of fest)
$$S^{0}(X_{1}, X_{2}, ..., X_{n})$$

$$= card \{D \cap \{X_{1}, X_{2}, ..., X_{n}\}: D \in \mathcal{D}\}$$

$$Vapnik - Chervonenkis (VC)$$

$$(domain of fest)$$

$$S^{0}(X_{1}, X_{2}, ..., X_{n})$$

$$= card \{D \cap \{X_{1}, X_{2}, ..., X_{n}\}: D \in \mathcal{D}\}$$

$$Vapnik - Chervonenkis (VC)$$

$$Subgraph Classes.
(domain of fest)
$$S^{0}(X_{1}, X_{2}, ..., X_{n})$$

$$= card \{D \cap \{X_{1}, X_{2}, ..., X_{n}\}: D \in \mathcal{D}\}$$

$$Vapnik - Chervonenkis (VC)$$$$$$

 $M^{(n)} :=$ $sup \left\{ \Delta^{\mathcal{D}}(X_1, X_2, \dots, X_n) : (X_1, X_2, \dots, X_n) \in \chi \right\}$ $V(\mathcal{D}) := \inf \{ n \ge 1 : m^{\mathcal{D}}(n) < 2^n \}$ - V(D) is called the index of the class D. - Dis called a VC-class if \vee $(\mathcal{D}) < \infty$.

Example 2 $\mathcal{D} := \{(-\infty, t], t \in \mathbb{R}^d\}$ Then, $m^{\mathcal{D}}(n) = (n+1)^d$, so that Dis a VC- class. $\xrightarrow{\times} \times$

Example 3 $\mathcal{D} := \{ \{ \chi : \langle \chi, \Theta \rangle \rangle \} : \Theta \in \mathbb{R}^{d}, y \in \mathbb{R}^{d}.$ ×_0_ Х \star * X * $m^{\mathcal{D}}(n) \leq 2^{d} \begin{pmatrix} n \\ d \end{pmatrix}$ $\vee(\mathcal{D}) \leq d+2$.